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Distinct spatiotemporal subtypes of amyloid deposition are
associated with diverging disease profiles in cognitively normal
and mild cognitive impairment individuals
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We aimed to investigate the relationship between spatiotemporal changes of amyloid deposition and Alzheimer’s disease (AD)
profiles in cognitively normal (CN) and those with mild cognitive impairment (MCI). Using a data-driven method and amyloid-PET
data, we identified and validated two subtypes in two independent datasets (discovery dataset: N= 548, age= 72.4 ± 6.78, 49%
female; validation dataset: N= 348, age= 74.9 ± 8.16, 47% female) from the Alzheimer’s Disease Neuroimaging Initiative across a
range of individuals who were CN or had MCI. The two subtypes showed distinct regional progression patterns and presented
distinct genetic, clinical and biomarker characteristics. The cortex-priority subtype was more likely to show typical clinical
syndromes of symptomatic AD and vice versa. Furthermore, the regional progression patterns were associated with clinical and
biomarker profiles. In sum, our findings suggest that the spatiotemporal variants of amyloid depositions are in close association
with disease trajectories; these findings may provide insight into the disease monitoring and enrollment of therapeutic trials in AD.
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INTRODUCTION
Alzheimer’s disease (AD) is characterized by the accumulation of
extracellular beta-amyloid (Aβ) proteins, which affects subsequent
events that include tau deposition, synaptic and neuronal loss,
and cognitive decline [1, 2]. Currently, amyloid pathology has
become an important diagnostic criterion for AD, promoting the
use of cerebrospinal fluid (CSF) and positron emission tomography
(PET) measurements as equivalent measures [3–5]. Numerous
studies have detected increased levels of amyloid accumulation in
PET in individuals who were either cognitively normal (CN) or had
mild cognitive impairment (MCI) [6, 7]. However, these individuals
have shown remarkable variability in clinical performance. There-
fore, further exploration of amyloid accumulation, such as early
detection and stratification and linking it with downstream events,
is required to aid the clinical trials.
Amyloid accumulation affects different brain regions at different

time points, producing abundant spatiotemporal variations.
Characterizing and staging the regional amyloid deposition
spread could enable the earlier detection and stratification of
amyloid accumulation. Furthermore, such regional progression
patterns have been found to be associated with cognitive
impairment [6, 8–11]. Post-mortem neuropathology previously
identified a 4-stage model of amyloid deposition, which begins in
the associative neocortex, then affects limbic and primary sensory-

motor areas, and finally impacts subcortical structures, forming
the basis for Braak staging [8, 9]. Amyloid PET studies also
explored and verified Braak staging in vivo using discrimination or
data-driven methods [6, 10, 12]. These studies assumed that all
individuals follow a common progression pattern, and the
inherent assumption has limited the discovery of subtypes.
Recently, spatiotemporal variations of neuropathology in AD
spectrum have been decoded properly by identifying distinct
subtypes with distinct regional progression patterns [13, 14]. It is
now possible to explore the relationship between spatiotemporal
changes of amyloid deposition and molecular and cognitive
biomarkers early on, which may lead to more differentiated
population stratification and is crucial for improving the early
prediction of AD pathophysiology [15].
In this study, we hypothesized that heterogeneous disease

characteristic is associated with amyloid spatiotemporal accumu-
lation in CN and MCI. To directly test this hypothesis, we studied
multiple regional progression patterns on PET imaging to decode
the spatiotemporal variations of amyloid deposition using the
Subtype and Stage Inference (SuStaIn) model [16] in CN and MCI.
SuStaIn identifies subtypes with common disease progression
patterns by combining clustering and disease progression
modeling using only cross-sectional datasets, which contain
snapshots of biomarker measurements. Furthermore, the subtype
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and temporal stage of each subject can be inferred probabil-
istically based on the model [16]. Using SuStaIn with Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data, we found two
subtypes in both the discovery and validation datasets, which
included a broad range of individuals who were either cognitively
normal (CN) or had mild cognitive impairment (MCI). We
compared the two subtypes and assessed their stages with
respect to clinical, genetic, and biomarker characteristics that are
known to be associated with AD [i.e., Mini-Mental State Examina-
tion (MMSE), memory, executive function, language function,
visuospatial function, apolipoprotein E ε4 allele (APOE ε4), CSF Aβ,
total tau (t-tau), and phosphorylated tau (p-tau)]. Moreover, we
validated our results in the validation dataset.

MATERIAL AND METHODS
Participants
The data used in this study was acquired from the ADNI, and the up-to-
date information is accessible on the website (www.adni-info.org). The
ADNI study was approved by all the Institutional Ethical Review Boards of
all the participating centers, and all the participants provided written
informed consent to participate in the study. The data inclusion criteria
used in this study were as follows. MCI criteria were (1) MMSE score
between 24 and 30 (inclusive); (2) global Clinical Dementia Rating (CDR) of
0.5. CN was (1) MMSE score between 24 and 30 (inclusive); (2) global CDR
of 0. A set of 896 participants with available amyloid PET and T1-weighted
MRI was used in the analysis. The data were split into discovery datasets
(ADNI 2, N= 548) and validation datasets (ADNI 1/GO/3, N= 348). Table 1

presents the characteristics of the above study data. Several profiles were
only available for a subset of individuals across the two datasets, including
CSF biomarkers (71.3%) and APOE ε4 allele carriage (91.2%). CSF samples
were acquired through lumbar puncture. Data were retrieved from the
ADNIMERGE.csv. Composite scores for memory, executive, language, and
visuospatial functions were available in the UWNPSYCHSUM file from ADNI
repository [17, 18]. Longitudinal clinical follow-up was available for a
subset of individuals (95.3 and 72.1% in the discovery and validation
datasets, respectively). The conversion event was determined by whether
individuals converted to dementia within 6 years.

Image data acquisition and preprocessing
Structural MRI data were acquired on 3T MRI scanners in ADNI2, ADNIGO,
and ADNI3 or on 1.5T MRI scanners in ADNI1. Amyloid PET images were
obtained using 18F-florbetapir radiotracers. The detailed parameters of the
imaging data can be found online (http://adni.loni.usc.edu). To increase the
uniformity in the multicentric data, all PET scans underwent standardized
pre-processing steps in ADNI. Briefly, six five-minute frames or four five-
minute frames were acquired 30 to 60min post-injection. To reduce the
effects of head motion, each extracted frame was co-registered to the first
frame (acquired at 30–35min). The first frame and co-registered frames were
recombined into a co-registered dynamic image set. Frames in the image set
were averaged and reoriented into standard space (voxel grid size
160 × 160 × 96, voxel size 1.5mm cubic). Spatial re-orientation and intensity
normalization had been applied to scans in the image set. Finally, the images
were smoothed to the lowest resolution scanners (8mm full-width at half-
maximum uniform isotropic). To obtain a standard uptake value ratio (SUVR)
to form a voxel-wise map, the preprocessed amyloid PET scans were
proportionately scaled by the mean uptake values for the whole cerebellum,
which is most commonly used for scaling Florbetapir-PET data [19, 20].
Each amyloid PET scan was rigidly co-registered to the time-matched T1-

weighted MRI. Then, all the PET scans were spatially normalized into MNI
standard space using the registration parameters derived from the T1-
weighted MRI normalization. All the imaging data were processed by
applying the cubic spline interpolation scheme implemented in the Aladin
algorithm [21]. Finally, we computed the average SUVRs across the 11
regions of interest (ROIs), which were the bilateral regions of the frontal,
temporal, parietal, and occipital lobes as well as of the insula, amygdala,
cingulate cortex, hippocampus, thalamus, basal ganglia, and cerebellum,
all of which are in the first-level of the Human Brainnetome atlas [22]. Each
ROI SUVR was adjusted by demographic data (age, gender, and education)
using the linear regression model in the ADNI2 and ADNI1/GO/3 datasets.

Uncovering the spatiotemporal subtypes based on SuStaIn
model
Based on the above ROI SUVRs for each individual, we used the SuStaIn
model [16] to identify plausible spatiotemporal subtypes of amyloid
accumulation. SuStaIn is a probabilistic data-driven method developed to
uncover the spatiotemporal variance of biomarkers. This algorithm, the
detailed formalization of which has been described previously [16], was
implemented by the group from the UCL’s Progression of Neurological
Disease and is available on the website (https://github.com/ucl-pond).
SuStaIn estimates the maximum likelihood sequence of biomarker
transitions to abnormalities within each of the data-driven subgroups;
this allows the reconstruction of subtypes with a range of disease stages
[16]. Moreover, SuStaIn can calculate the probability that any individual
falls into a specific stage of each subtype. Individuals who have normal
biomarker measurements in all regions are classified as stage0 and are not
assigned to any subtype.
Based on biomarker measurements within different ROIs, the disease

progression model is represented by a set of optimal sequences, which are
modeled as a succession of severity z-scores for each biomarker and
represent the distinct subtypes [16]. In this case, we calculated regional
amyloid z-scores by normalizing the mean and the standard deviation of the
cognitively normal subjects. We defined 11 variables with one z-score so that
each subtype included 11 stages, which ranged from one (the earliest stage)
to 11 (the last stage). Previous studies used consistent severity z-scores for all
biomarkers [13, 16], but differential cutoffs need to be used due to noise
variations between brain regions [23, 24]. Here, we used the amyloid positive
ratio on the global signal as the regional positive ratio to determine specific
regional cutoffs, and we selected the most common cutoff of 1.1 [20, 25].
Then, the ratio was used as the regional Aβ-abnormality ratio (percentage of
individuals showing suprathreshold z-score) of 11 ROIs. Based on the z-scores
distribution of each ROI and the regional Aβ-abnormality ratio, we

Table 1. Sample characteristics.

ADNI2 ADNI1/GO/3 P value

Demographics

N (CN/MCI) 247/301 159/189 -

Age 72.4 ± 6.77 74.9 ± 8.14 <0.0001

Gender (M/F) 280/268 184/164 0.5377

Education 16.5 ± 2.59 16.1 ± 2.8 0.0152

Clinical domains

MMSE 28.5 ± 1.62 28.5 ± 1.57 0.4258

Memory 0.6 ± 0.76 0.7 ± 0.69 0.1539

Executive function 0.6 ± 0.92 0.7 ± 0.85 0.0644

Language function 0.6 ± 0.79 0.6 ± 0.78 0.2362

Visuospatial
function

0.1 ± 0.70 0.2 ± 0.66 0.0250

aConversion
(CN/MCI)

4/83 3/36 -

CSF biomarkers

N (CN/MCI) 210/276 27/126 -

Aβ 1092.4 ± 438.89 1090.9 ± 471.62 0.1507

t-tau 265.3 ± 122.29 268.7 ± 105.23 0.1316

p-tau 25.1 ± 13.4 25.6 ± 12.25 0.2005

Genotype

APOE ε4 (0/1/2) 319/188/41 183/78/8 0.0057

Amyloid-PET positive ratio

Cutoff of 1.1 48.1% 42.2% -

Average values are reported as mean ± SD. N= sample size, MCI mild
cognitive impairment, CN cognitively normal, F female, Mmale, MMSE Mini-
Mental State Examination, CSF cerebrospinal fluid, Aβ beta-amyloid, t-tau
total tau, p-tau phosphorylated tau.
aPersons who converted to dementia within 6 years follow-up. APOE ε4
genotype and CSF biomarkers were not available for all participants.
Amyloid-PET positive ratio is the proportion of individuals with global PET
measures greater than 1.1.
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determined region-specific z-score cutoffs of 11 ROIs. We trained the SuStaIn
model in the discovery dataset (amyloid-positivity ratio at 48.1%, Table 1) to
identify the subtypes. We fitted the model using up to 4 subtypes and used
ten-fold cross-validation to choose the optimal number based on Cross-
Validation Information Criterion (CVIC) [16].

Replicability and stability of subtypes
To evaluate the consistency between subtypes, we measured the similarities
of subtype progression patterns by evaluating the Kendall rank correlation.
The Kendall rank correlation ranges from −1 (inverse sequences) to 1
(identical sequences), and an expectation of 0 means independent
sequences. To assess the replicability of subtypes, we reran the SuStaIn
model on the independent validation dataset using the same steps. We then
compared the subtype progression patterns identified in the discovery and
validation datasets to examine whether we could identify the same subtypes.
To test the stability of each subtype, we compared the consistency of the
sequences across cross-validation folds. The averaged results of subtypes in
each dataset were given. In addition, we took 1,000,000 Markov Chain Monte
Carlo (MCMC) samples to evaluate the uncertainty of each sequence, a
process which has been used in many previous studies [13, 16]. Furthermore,
SuStaIn enables the probabilistic assignment of individuals to the most
probable subtype and stage. Meanwhile, the distribution of individuals across
subtypes and stages was obtained.

Examination of subtype characteristics
To examine the subtype-specific profiles, we compared individuals of
different subtypes with respect to demographic (age, gender, and education),
clinical (MMSE, memory, executive, language, and visuospatial function),
genetic (APOE ε4), and biomarker characteristics (CSF Aβ, t-tau, and p-tau) by
ANOVA or chi-square test, depending on which was appropriate. These
analyses were false discovery rate (FDR)-corrected for multiple comparisons.
To evaluate the progression of each subtype, we assessed the relationship

between the stages of each subtype and these characteristics using
Spearman correlation. To test the usefulness of each subtype to predict
conversion to dementia, we used Cox proportional hazards models with
subtypes or stages as predictors, adjusted for age, gender, and education and
took censoring into account with a maximum follow-up of 6 years. The
survival findings are illustrated graphically, as discussed later in the paper. In
all the analyses, the covariates (age, gender, and education) were adjusted,
and the continuous variables were centered and scaled.

RESULTS
Amyloid spatiotemporal subtypes in CN and MCI
We applied the SuStaIn model to cross-sectional amyloid-PET data
to explore distinct subtypes that could be characterized by
regional progression patterns. In ADNI2, we evaluated the CVIC of
the cluster solutions by cross-validation and found two optimal
and converged subtypes. The two progression patterns started
with different regions and finally progressed to the cerebellum via
different pathways. Figure 1 shows the two distinct progression
patterns without the last stage (cerebellum). In subtype 1, the
subcortical regions, followed by the cingulate and then the insula
became abnormal earlier than the cortical areas. We refer to this
trajectory as the subcortex-priority subtype. In subtype 2, the
cingulate was the first abnormal region followed by the cortical
regions, then the insula, and from there the subcortical regions, so
we termed it as the cortex-priority subtype.

Reproducibility of the subtypes between the independent
datasets
We reran the SuStaIn model on the validation dataset with the
cutoffs in the discovery dataset. The model identified two

Fig. 1 Regional progression patterns of amyloid accumulation identified via the discovery dataset (ADNI2). Green shows the abnormal
regions in the numbered stage and blue indicates abnormal regions from the previous stage. The last stage, cerebellum, is not shown here. In
the subcortex-priority subtype, amyloid abnormality begins in several subcortex regions and successively affects the cingulate, amygdala, and
insula, and finally the cortical regions. In the cortex-priority subtype, the cingulate is the first abnormal region, followed by cortical areas, and
then the insula and subcortical regions.
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optimal subtypes, again a cortex-priority subtype and a
subcortex-priority subtype (Fig. 2). We compared the progres-
sion patterns of the identical subtypes across the two datasets
and found an average consistency of 85.5%. In the subcortex-
priority subtype of the validation dataset, abnormalities of the
thalamus and basal ganglia appeared in the very first stages,
followed by a similar order to that identified in the subcortex-
priority subtype of the discovery dataset, but the specific order
of the amygdala and cingulate were swapped. In the cortex-
priority subtype, the cingulate was the first region to show
abnormality followed by the cortical regions, and the subcortical
regions became abnormal at the end. Unlike the previous
cortex-priority subtype, the occipital cortex became abnormal
earlier than the temporal, and the hippocampus changed before
the amygdala. In general, however, the cortex-priority and
subcortex-priority subtypes were replicated in the independent
datasets.

Stability of the two subtypes
The stability of each subtype was tested across cross-validation
folds. We found that the subtypes were robust in both datasets,
giving an average consistency of 98.0% and 98.8%, separately.
Central progression patterns and their variances were further
estimated by MCMC. Positional variance diagrams showed good
positional stability (Supplementary Fig. 1). These findings
indicated the stability of the subtypes. Furthermore, individuals
were probabilistically assigned to subtypes and stages (Supple-
mentary Figs. 2 and 3), which were identified based on the cut-
offs and the two independent datasets, separately. Fewer than
4% of the individuals were classified to stage0 or the last stage

(cerebellum in all subtypes) across the datasets. These
individuals could not be assigned to a subtype and were
excluded from further analysis. The progression patterns we
identified not only represented amyloid deposition over time
but also provided reliable utility for individual stratification.

Demographics, genetic and biomarker characterizations of
the two subtypes
In both datasets, there were no differences in age, gender, and
education between the cortex-priority and subcortex-priority sub-
types (all Ps > 0.05). We further evaluated the APOE ε4 frequency
between the subtypes (Table 2). In ADNI2, the proportion of APOE ε4
carriers were lower in the subcortex-priority subtype than in the
cortex-priority subtype (χ2(2)= 38.07; PFDR < 0.0001). We validated
the result in ADNI1/GO/3 (χ2(2)= 14.84; PFDR= 0.0015), which
further highlighted the significant difference in APOE ε4 distributions
between the two subtypes.
Table 2 summarizes the difference in the CSF biomarkers (Aβ,

t-tau, and p-tau) between the subtypes. In comparison with the
subcortex-priority subtype, subjects in the cortex-priority sub-
type had a lower level of Aβ and higher concentration of t-tau
and p-tau when controlling for the covariates. This means that
the cortex-priority subtype had more severe AD profiles. In both
the subcortex-priority subtype and the cortex-priority subtype,
the stages correlated positively with Aβ, as expected (Fig. 3).
Furthermore, individuals showed increasing t-tau and p-tau
concentrations over the follow-up stages. These findings were
consistent between the two datasets. In general, we found that
the cortex-priority and subcortex-priority subtypes showed
distinct genetic and biomarker characteristics.

Fig. 2 Amyloid abnormality patterns reproduced in the validation dataset (ADNI1/GO/3). Green represents the abnormal regions in the
numbered stage and blue indicates abnormal regions of the previous stage. The last stage, cerebellum, is not shown here. The progression
pattern of amyloid abnormality in the subcortex-priority subtype evolves from the subcortical regions, over the cingulate and insula, to the
cortical regions. The progression pattern of amyloid abnormality in the cortex-priority subtype evolves from the cingulate, to the cortical
regions, to the insula, and finally to the subcortical regions.
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Distinct clinical profiles of the two subtypes
Clinical profile comparisons between different subtypes across the
discovery and validation datasets can be found in Table 2.
Compared to the subcortex-priority subtype, individuals of the
cortex-priority subtype showed worse memory, executive func-
tion, and language function. The significant differences, except for
language impairment, were validated in the independent dataset.
We also found that the stages of the cortex-priority subtype were
highly correlated with memory decline across the two datasets
(Fig. 4A). This association suggests that a higher stage is
associated with worse memory. However, there was no significant
and reproducible association between stages and these clinical
profiles in the subcortex-priority subtype (Fig. 4B).
Next, we tested whether the two subtypes conferred differences in

vulnerability to AD conversion. Survival curves of the subtypes are
shown in Fig. 5. In the ADNI2 dataset, the individuals in the cortical-
priority subtype had a higher risk of conversion to dementia than the
subjects in the subcortical-priority subtype (hazard ratio: 7.62; 95%
confidence interval: 4.03–14.39, P< 0.0001) within a mean follow-up
period of 3.6 ± 1.84 years. This result was reproducible in the
validation dataset (hazard ratio: 2.81; 95% confidence interval:
1.46–5.41, P= 0.0020) within a mean follow-up period of 3.9 ± 1.91
years. These findings suggest that the progression pattern of amyloid
deposition in CN and MCI shows differences in cognitive decline. In
the cortex-priority subtype, we found that individuals at higher stages
had an increased probability of progressing to dementia compared
to those at lower stages (hazard ratio: 1.63; 95% confidence interval:
1.31–2.01, P< 0.0001). Similar results were obtained in the indepen-
dent dataset (hazard ratio: 1.59; 95% confidence interval: 1.06–2.41,
P= .0255). By contrast, there was a lot of overlap between the
conversion risk curves in the subcortex-priority subtype until the later
stages (stage ≥ 6) in the cortex-priority subtype.

DISCUSSION
Here, we applied an unsupervised data-driven method in a broad
range of CN and MCI individuals to evaluate the association
between spatiotemporal variability in amyloid deposition and AD
profiles. We identified two reproducible subtypes characterized by

different regional progression patterns in two independent
datasets. The spatiotemporal subtypes of amyloid deposition
showed distinct cognitive and biomarker characteristics. Our
findings suggest that spatiotemporal progression patterns in
amyloid accumulation could provide insight into the disease
monitoring and enrollment of therapeutic trials in CN and MCI.
In this study, the amyloid deposition was aptly described as two

distinct progression patterns in a purely data-driven model, offering
regional abnormality trajectories from early to late stages. In the
cortex-priority subtype, the cingulate was the first region to show
abnormality. In line with this, previous studies demonstrated that the
cingulate has high-intensity values early on and may be the seed of
amyloid deposition propagation [12, 26–28]. The following abnormal
regions, the parietal lobe and frontal region, seem to be affected by
the neighboring cingulate, and the association between them has
been indicated in a previous study [29]. In general, the progression
pattern of the cortex-priority subtype was similar to previous
neuropathologic findings [8, 30, 31], except for the early appearance
of the cingulate. In addition, some PET estimates showed that the
medial frontal, medial parietal, and lateral temporo-parietal areas
were the initial sites of amyloid deposition [32, 33]. Different ROI
choices and analytic approaches may contribute to these incon-
sistencies. Data-driven methods may lead to unappreciated subtypes.
The progression pattern in the subcortex-priority subtype was an
intriguing result. In this subtype, the abnormalities in the subcortical
regions occurred prior to those in the cerebral cortex. In particular,
the thalamus and basal ganglia became abnormal earlier than the
other regions. In line with this, previous studies have shown that the
thalamus and basal ganglia are vulnerable to amyloid deposition and
appear to have high SUVRs across preclinical AD phases [34, 35].
However, such a sequence contradicts the progression of amyloid
from the neocortex to the subcortical regions in previous studies
[14, 15, 36]. One possible explanation for the discrepancy is that the
cutoffs we defined may make subcortical SUVRs less reliable and
more sensitive to variation. Therefore, such subtype may fall short of
explaining the ground truth neuropathology. Meanwhile, a distinct
advantage of the present consideration is that it provided additional
information of amyloid deposition and captured the early variation in
the vast majority of individuals with few clinical symptoms.

Table 2. Clinical, CSF biomarker, and genetic comparisons between subtypes.

ADNI2 ADNI1/GO/3

Subcortex-
priority
(n= 257)

Cortex-
priority
(n= 274)

F value PFDR value Subcortex-
priority
(n= 217)

Cortex-
priority
(n= 122)

F value PFDR value

Clinical profiles

MMSE 28.8 ± 1.36 28.2 ± 1.76 21.57 <0.0001 28.6 ± 1.51 28.2 ± 1.65 5.64 0.0232

Memory 0.9 ± 0.68 0.4 ± 0.79 47.00 <0.0001 0.8 ± 0.68 0.6 ± 0.68 6.41 0.0177

Executive
function

0.8 ± 0.90 0.4 ± 0.91 27.07 <0.0001 0.8 ± 0.85 0.5 ± 0.78 10.55 0.0029

Language
function

0.7 ± 0.70 0.4 ± 0.84 23.77 <0.0001 0.6 ± 0.80 0.6 ± 0.69 0.44 0.5732

Visuospatial
function

0.1 ± 0.68 0.1 ± 0.72 0.19 0.6569 0.2 ± 0.67 0.2 ± 0.65 0.01 0.9685

CSF Biomarkers

Aβ 1346.1 ± 376.26 861.4 ± 359.82 212.36 <0.0001 1319.1 ± 424.25 764.8 ± 333.06 75.11 <0.0001

t-tau 242.8 ± 104.91 290.0 ± 133.92 18.19 <0.0001 246.6 ± 94.64 299.1 ± 111.81 10.18 0.0030

p-tau 22.0 ± 10.73 28.5 ± 14.96 28.79 <0.0001 22.3 ± 10.39 30.3 ± 13.27 17.95 0.0004

Genotype

APOE ε4 (0/1/2) 182/67/8 125/117/32 38.07a <0.0001 159/52/5 66/47/9 14.84a 0.0015

Data are presented as n or mean ± SD. Tests are based on chi-square and ANOVA when appropriate.
ameans χ2. MMSE Mini-Mental State Examination, CSF cerebrospinal fluid, Aβ beta-amyloid, t-tau total tau, p-tau phosphorylated tau.
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Fig. 3 Biomarkers profiles are correlated with progression patterns of amyloid in each subtype. A Higher progression stages of the
subcortex-priority and cortex-priority subtypes were associated with lower CSF Aβ across the discovery and validation datasets. B Higher
stages of each subtype were associated with increased levels of CSF p-tau across the two datasets. C Similarly, the significant associations
between stages of each subtype and CSF t-tau. All associations were tested by Spearman correlation while controlling covariates (age, gender
and education).

Fig. 4 Subtypes exhibit distinct clinical profiles. A Progression stages of the cortex-priority subtype were associated with memory decline
across the two datasets. B Characterization of the relationship between the progression stages of the subcortex-priority and cortex-priority
subtypes and the clinical profiles. All associations were tested by Spearman correlation while controlling covariates (age, gender, and
education). Values in white indicate P values below .05 and stars indicsate P values below 0.01.
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The spatiotemporal subtypes enable linkage of amyloid
accumulation trajectories with genetic and biomarker character-
istics. APOE ε4 has consistently been found to be the strongest risk
factor for AD, increasing the risk via oligomerization, aggregation,
degradation, and clearance of amyloid [37]. Previous studies
showed that individuals with positive amyloid-PET were more
frequently APOE ε4 carriers than those with negative ones [38].
Similar findings have been found in the two subtypes we
identified. CSF indicators usually provide highly concordant
information with PET measures [4, 39]. In line with this, we found
significant associations between the stages and the CSF Aβ
concentrations in distinct subtypes, but the CSF level was lower in
the subcortex-priority subtype. Previous studies showed that
amyloid-PET is associated with tau pathology in the preclinical and
prodromal stages of AD [40, 41]. Because of the extensive absence
of tau-PET data from the two datasets, we used CSF t-tau and
p-tau data as measures of tau pathology and found that higher
stages in either one of the subtypes were correlated with
increased levels of t-tau and p-tau. Our findings indicate that all
the sequences of regional vulnerabilities in amyloid deposition are
associated with tau accumulation, potentially providing insight
into the monitoring of AD neuropathology.
Few studies have examined the association between spatio-

temporal variations in amyloid deposition and clinical presenta-
tion in CN and MCI. We found that individuals with the cortex-
priority subtype had lower cognitive performance and executive
function compared with those in the subcortex-priority subtype.
Notably, individuals in the cortex-priority subtype had a higher
probability of conversion to dementia within 6 years. Moreover,
the stage may be a useful marker for cognitive decline or
conversion risk for individuals in the cortex-priority subtype.
However, there was no apparent conversion until the presence of
cortical abnormality for individuals in the subcortex-priority
subtype, providing evidence that a significant proportion of

elderly subjects remain cognitively normal with amyloid deposi-
tion [42, 43]. Overall, participants with different progression
patterns of amyloid accumulation have distinct disease trajec-
tories in individuals in CN and MCI. Incorporating these findings
into clinical trials with differentiated populations holds great
promise for improving the accuracy of individualized diagnosis
and providing opportunities for future therapeutic intervention to
prevent or slow the rate of disease progression [44]. In particular,
our findings suggested that amyloid abnormality in the cortical
regions are a key predictor in the progression of cognitive decline
and subsequent conversion to AD dementia.
Although we identified consistent spatiotemporal subtypes

of amyloid burden across two independent datasets in CN and
MCI that differed in disease profiles, our results need to be
replicated in other cohorts. The subcortical regions are primarily
being used to characterize the global amyloid accumulation.
Current findings lack clear cutoffs of the subcortical area,
especially in individuals with few clinical symptoms. Although
the two subtypes identified by cutoffs defined in the context of
our study resulted in more differentiated population stratifica-
tion, future work is needed to balance the sensitivity and
specificity to account for the underlying neuropathology.
Furthermore, AD is a complex neurodegenerative disorder that
is associated with amyloid deposition, tau accumulation,
hypometabolism, brain atrophy, and a variety of biological
processes. Future work should investigate other AD-related
biomarkers to further improve risk stratification.
In summary, we found two spatiotemporal subtypes with

regional progression patterns of amyloid accumulation in a broad
range of individuals with few clinical symptoms. The amyloid
subtypes showed distinct regional progression patterns and AD
profiles. Furthermore, the regional progression patterns were
associated with clinical and biomarker characteristics. Our findings
highlight the importance of uncovering the spatiotemporal

Fig. 5 Subtypes and progression stages are associated with the risk of conversion to dementia. A Individuals with the cortex-priority
subtype (red) had a higher probability of conversion to dementia compared to individuals with the subcortex-priority subtype (green) across
the discovery and validation datasets. B High stages of the cortex-priority subtype identified very high-risk groups of conversion to dementia
across the two datasets. C Survival curves comparing time-to-conversion of stages in subcortex-priority subtype across the two datasets. The
later stages (6–10) are grouped into the last stage. All survival curve analyses were adjusted for the age, gender, and education covariates.
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variations of amyloid deposition in CN and MCI for clinical trials
and precision medicine.

DATA AVAILABILITY
The ADNI data used in this study were obtained from the ADNI database (available at
https://adni.loni.usc.edu).
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